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Abstract - Feature selection is an important problem for pattern classification systems. We study how to 
select good features according to the maximal statistical dependency criterion based on mutual 
information. Because of the difficulty in directly implementing the maximal dependency condition, we first 
derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-
order incremental feature selection. Then, we present a two-stage feature selection algorithm by 
combining mRMR and other more sophisticated feature selectors (e.g. wrappers). This allows us to select 
a compact set of superior features at very low cost. We perform extensive experimental comparison of our 
algorithm and other methods using three different classifiers (naïve Bayes, support vector machine, and 
linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell 
lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature 
selection and classification accuracy.  
 
Index Terms - Feature selection, mutual information, minimal redundancy, maximal relevance, maximal 
dependency, classification 
 
1. Introduction 

In many pattern recognition applications, identifying the most characterizing features (or attributes) 
of the observed data, i.e., feature selection (or variable selection, among many other names) 
[30][14][17][18][15][12][11][19][31][32][5], is critical to minimize the classification error. Given the 
input data D tabled as N samples and M features X = {xi, i=1,…,M}, and the target classification variable 
c, feature selection problem is to find from the M-dimensional observation space, RM, a subspace of m 
features, Rm,  that "optimally" characterizes c.  

Given a condition defining the "optimal characterization", a search algorithm is needed to find the 
best subspace. Because the total number of subspaces is 2M, and the number of subspaces with dimensions 
no larger than m is Σ m i=1(M i ), it is hard to search the feature subspace exhaustively. Alternatively, many 
sequential-search based approximation schemes have been proposed, including best individual features, 
sequential forward search, sequential forward floating search, etc (see [30][14][13] for detailed 
comparison.). 

The optimal characterization condition often means the minimal classification error. In an 
unsupervised situation where the classifiers are not specified, minimal error usually requires the maximal 
statistical dependency of the target class c on the data distribution in the subspace Rm (and vice versa). 
This scheme is maximal dependency (Max-Dependency). 

One of the most popular approaches to realize Max-Dependency is maximal relevance (Max-
Relevance) feature selection: selecting the features with the highest relevance to the target class c. 
Relevance is usually characterized in terms of correlation or mutual information, of which the latter is one 
of the widely used measures to define dependency of variables. In this paper, we focus on the discussion 
of mutual information based feature selection. 

Given two random variables x and y, their mutual information is defined in terms of their 
probabilistic density functions p(x), p(y) and p(x,y): 
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In Max-Relevance, the selected features xi are required, individually, to have the largest mutual 
information I(xi; c) with the target class c, reflecting the largest dependency on the target class. In terms 
of sequential search, the m best individual features, i.e. the top m features in the descent ordering of I(xi; 
c), are often selected as the m features.  

In feature selection, it has been recognized that the combinations of individually good features do not 
necessarily lead to good classification performance. In other words, "the m best features are not the best m 
features" [4][3][14][30]. Some researchers have studied indirect or direct means to reduce the redundancy 
among features1 (e.g. [4][14][19][15][22][12][5]) and select features with the minimal redundancy (Min-
Redundancy). For example, in the sequential forward floating search [25], the joint dependency of 
features on the target class is maximized; as a by-product, the redundancy among features might be 
reduced. In [12], Jaeger et al presented a pre-filtering method to group variables, thus redundant variables 
within each group can be removed. In [5], we proposed a heuristic minimal-redundancy-maximal-
relevance (mRMR) framework to minimize redundancy, and used a series of intuitive measures of 
relevance and redundancy to select promising features for both continuous and discrete data sets. 

Our work in this paper focuses on three issues that have not been touched in earlier work. First, 
although both Max-Relevance and Min-Redundancy have been intuitively used for feature selection, no 
theoretical analysis is given on why they can benefit selecting optimal features for classification. Thus the 
first goal of this paper is to present a theoretical analysis showing that mRMR is equivalent to Max-
Dependency for first-order feature selection, but is more efficient.  

Second, we investigate how to combine mRMR with other feature selection methods (such as 
wrappers [18][15]) into a two-stage selection algorithm. By doing this, we show that the space of 
candidate features selected by mRMR is more characterizing. This property of mRMR facilitates the 
integration of other feature selection schemes to find a compact subset of superior features at very low 
cost.  

Third, through comprehensive experiments we compare mRMR, Max-Relevance, Max-Dependency, 
and the two-stage feature selection algorithm, using three different classifiers and four data sets. The 
results show that mRMR and our two-stage algorithm are very effective in a wide range of feature 
selection applications. 

This paper is organized as follows. Section 2 presents the theoretical analysis of the relationships of 
Max-Dependency, Max-Relevance, and Min-Redundancy. Section 3 presents the two-stage feature 
selection algorithm, including schemes to integrate wrappers to select a squeezed subset of features. 
Section 4 discusses implementation issues of density estimation for mutual information, and several 
different classifiers. Section 5 gives experimental results on four data sets, including handwritten 
characters, arrhythmia, NCI cancer cell lines, and lymphoma tissues. Sections 6 and 7 are discussions and 
conclusions, respectively. 
 
2. Relationships of Max-Dependency, Max-Relevance and Min-Redundancy 
2.1 Max-Dependency 

In term of mutual information, the purpose of feature selection is to find a feature set S with m 
features {xi}, which jointly have the largest dependency on the target class c. This scheme, called Max-
Dependency, has the following form:  

)};,...,1,({   ),,(max cmixIDcSD i == .    (2) 
Obviously, when m equals 1, the solution is the feature that maximizes I(xj; c) (1 ≤ j ≤ M). When m > 

1, a simple incremental search scheme is to add one feature at one time: given the set with m−1 features, 
Sm-1, the mth feature can be determined as the one that contributes to the largest increase of I(S; c), which 
takes the form of Eq. (3). 

                                                 
1 Minimal redundancy has also been studied in feature extraction, which aims to find good features in a transformed 
domain. For instance, it has been well addressed in various techniques such as principal component analysis and 
independent component analysis [10], neural network feature extractors (e.g. [22]), etc. 
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Despite the theoretical value of Max-Dependency, it is often hard to get an accurate estimation for 
multivariate density p(x1, …, xm) and p(x1, …, xm, c), because of two difficulties in the high-dimensional 
space: 1) the number of samples is often insufficient, and 2) the multivariate density estimation often 
involves computing the inverse of the high-dimension covariance matrix, which is usually an ill-posed 
problem. Another drawback of Max-Dependency is the slow computational speed. These problems are 
most pronounced for continuous feature variables.  

Even for discrete (categorical) features, the practical problems in implementing Max-Dependency 
cannot be completely avoided. For example, suppose each feature has 3 categorical states and N samples. 
K features could have a maximum min(3K, N) joint states. When the number of joint states increases very 
quickly and gets comparable to the number of samples, N, the joint probability of these features, as well 
as the mutual information, cannot be estimated correctly. Hence, although Max-Dependency feature 
selection might be useful to select a very small number of features when N is large, it is not appropriate 
for applications where the aim is to achieve high classification accuracy with a reasonably compact set of 
features.   

 
2.2 Max-Relevance and Min-Redundancy 

As Max-Dependency criterion is hard to implement, an alternative is to select features based on 
maximal relevance criterion (Max-Relevance). Max-Relevance is to search features satisfying Eq. (4), 
which approximates D(S,c) in Eq. (2) with the mean value of all mutual information values between 
individual feature xi and class c.  
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It is likely that features selected according to Max-Relevance could have rich redundancy, i.e. the 
dependency among these features could be large. When two features highly depend on each other, the 
respective class-discriminative power would not change much if one of them were removed. Therefore, 
the following minimal redundancy (Min-Redundancy) condition can be added to select mutually 
exclusive features [5]:  
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The criterion combining the above two constraints is called "minimal-redundancy-maximal-
relevance" (mRMR) [5]. We define the operator Φ(D, R) to combine D and R and consider the following 
simplest form to optimize D and R simultaneously: 

RDRD −=ΦΦ    ),,(max .      (6) 
In practice, incremental search methods can be used to find the near-optimal features defined by Φ(.). 

Suppose we already have Sm-1, the feature set with m−1 features. The task is to select the mth feature from 
the set {X − Sm-1}. This is done by selecting the feature that maximizes Φ(.). The respective incremental 
algorithm optimizes the following condition:  
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The computational complexity of this incremental search method is O(|S|⋅M).  
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2.3 Optimal First-Order Incremental Selection 

We prove in the following that the combination of Max-Relevance and Min-Redundancy criteria, 
i.e., the mRMR criterion, is equivalent to the Max-Dependency criterion if one feature is selected (added) 
at one time. We call this type of selection the "first-order" incremental search. We have the following 
theorem.  

Theorem: For the first-order incremental search, mRMR is equivalent to Max-Dependency (Eq.(2)).  
Proof: By definition of the first-order search, we assume that Sm-1, i.e. the set of m-1 features, has 

already been obtained. The task is to select the optimal mth feature xm from set {X − Sm-1}. 
The dependency D in Eqs.(2) and (3) is represented by mutual information, i.e., D = I(Sm; c) where 

Sm = {Sm-1, xm} can be treated as a multivariate variable. Thus by the definition of mutual information, we 
have: 
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where H(.) is the entropy of the respective multivariate (or univariate) variables. 
Now we define the following quantity J(Sm) = J(x1, …, xm) for scalar variables x1, …, xm,  
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Similarly, we define J(Sm, c) = J(x1, …, xm, c) as  
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We can easily derive Eqs. (11) and (12) from Eqs.(9) and (10), 
H(Sm-1, xm) = H(Sm) = Σ m i=1H(xi) − J(Sm),    (11) 

H(Sm-1, xm, c) = H(Sm, c) = H(c) + Σ m i=1H(xi) − J(Sm, c).    (12) 
By substituting them to the corresponding terms in Eq. (8), we have 
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Obviously, Max-Dependency is equivalent to simultaneously maximizing the first term and 
minimizing the second term.  

We can use the Jensen's Inequality [16] to show the second term J(Sm-1, xm) is lower-bounded by 0. A 
related and slightly simpler proof is to consider the inequality log(z) ≤ z − 1 with the equality if and only 
if z = 1. We see that  
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It is easy to verify that the minimum is attained when p(x1, …, xm) = p(x1) ⋅⋅⋅ p(xm), i.e. all the 
variables are independent of each other. As all the m–1 features have been selected, this pair-wise 
independence condition means that the mutual information between xm and any selected feature xi (i = 
1,…,m–1) is minimized. This is the Min-Redundancy criterion. 
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We can also derive the upper bound of the first term in Eq. (13), J(Sm-1, c, xm). For simplicity, let's 
first show the upper bound of the general form J(y1, …, yn), assuming there are n variables y1, …, yn. This 
can be seen as follows. 
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Eq. (15) can be easily extended as  
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It is easy to verify the maximum of J(y1, …, yn), or similarly the first term in Eq. (13), J(Sm-1, c, xm), is 
attained when all variables are maximally dependent. When Sm-1 has been fixed, this indicates that xm and 
c should have the maximal dependency. This is the Max-Relevance criterion.  

Therefore, according to Eq. (13), as a combination of Max-Relevance and Min-Redundancy, mRMR 
is equivalent to Max-Dependency for first-order selection.  

�  
Note that the quantity J(.) in Eqs. (9) and (10) has also been called "mutual information" for multiple 

scalar variables [10]. We have the following observations: 
1) Minimizing J(Sm) only is equivalent to searching mutually exclusive (independent) features2. 

This is insufficient for selecting highly discriminative features.  
2) Maximizing J(Sm, c) only leads to Max-Relevance. Clearly, the difference between mRMR and 

Max-Relevance is rooted in the different definitions of dependency (in term of mutual 
information). Eq.(10) does not consider the joint effect of features on the target class. On the 
contrary, Max-Dependency (Eqs. (2) and (3)) considers the dependency between the data 
distribution in subspace Rm and the target class c. This difference is critical in many 
circumstances.  

3) The equivalence between Max-Dependency and mRMR indicates mRMR is an optimal first-
order implementation scheme of Max-Dependency. 

4) Compared to Max-Dependency, mRMR avoids the estimation of multivariate densities p(x1, …, 
xm) and p(x1, …, xm, c). Instead, calculating the bivariate density p(xi, xj) and p(xi, c) could be 
much easier and more accurate. This also leads to a more efficient feature selection algorithm. 

 
3. Feature Selection Algorithms 

Our goal is to design efficient algorithms to select a compact set of features. In Section 2 we propose 
a fast mRMR feature selection scheme (Eq. (7)). A remaining issue is how to determine the optimal 
number of features m. Since a mechanism to remove potentially redundant features from the already 
selected features has not been considered in the incremental selection, according to the idea of mRMR we 
need to refine the results of incremental selection.  

We present a two-stage feature selection algorithm. In the first stage, we find a candidate feature set 
using the mRMR incremental selection method. In the second stage, we use other more sophisticated 
schemes to search a compact feature subset from the candidate feature set.  

                                                 
2 In the field of feature extraction, minimizing J(Sm) has led to an algorithm of independent component analysis [10]. 
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3.1 Selecting the Candidate Feature Set 

To select the candidate feature set, we compute the cross-validation classification error for a large 
number of features and find a relatively stable range of small error. This range is called Ω. The optimal 
number of features (denoted as n*) of the candidate set is determined within Ω. The whole process 
includes three steps:  

1) Use mRMR incremental selection (Eq.(7)) to select n (a preset large number) sequential features 
from the input X. This leads to n sequential feature sets S1⊂ S2 ⊂ … ⊂ Sn-1 ⊂ Sn.  

2) Compare all the n sequential feature sets S1, …, Sk, …, Sn, (1 ≤ k ≤ n) to find the range of k, 
called Ω, within which the respective (cross-validation classification) error ek is consistently 
small (i.e. has both small mean and small variance).  

3) Within Ω, find the smallest classification error e* = min ek. The optimal size of the candidate 
feature set, n*, is chosen as the smallest k that corresponds to e*.  

 
3.2 Selecting Compact Feature Subsets  

Many sophisticated schemes can be used to search the compact feature subsets from the candidate set 
Sn*. To illustrate that mRMR can produce better candidate features, which favors better combination with 
other methods, we use wrappers to search the compact feature subsets. 

A wrapper [15][18] is a feature selector that convolves with a classifier (e.g. naïve Bayes classifier), 
with the direct goal to minimize the classification error of the particular classifier. Usually, wrappers 
could yield high classification accuracy for a particular classifier, at the cost of high computational 
complexity and less generalization of the selected features on other classifiers. This is different from the 
mRMR method introduced above, which does not optimize the classification error directly. The latter type 
of approach (e.g. mRMR and Max-Relevance), sometimes called "filter" [18][15], often selects features 
by testing whether some preset conditions about the features and the target class are satisfied. In practice, 
the filter approach has much lower complexity than wrappers; the features thus selected often yield 
comparable classification errors for different classifiers, because such features often form intrinsic 
clusters in the respective subspace.  

By using mRMR feature selection in the first-stage, we intend to find a small set of candidate 
features, on which the wrappers can be applied at a much lower cost in the second-stage. We will 
continue our discussion on this point in Section 3.3.  

In this paper, we consider two selection schemes of wrapper, i.e. the backward and forward 
selections:  

1) The backward selection tries to exclude one redundant feature at a time from the current feature 
set Sk (initially, k is set to n* obtained in Section 3.1), with the constraint that the resultant 
feature set Sk-1 leads to a classification error ek-1 no worse than ek. Because every feature in Sk 
can be considered in removal, there are k different configurations of Sk-1. For each possible 
configuration, the respective classification error ek-1 is calculated. If for every configuration the 
corresponding ek-1 is larger than ek, there is no gain in either classification accuracy or feature 
dimension reduction (i.e. every existing feature in Sk appears to be useful), thus the backward 
selection terminates (accordingly, the size of the compact feature subset, m, is set to k). 
Otherwise, among the k configurations of Sk-1, the one that leads to the largest error reduction is 
chosen as the new feature set. If there are multiple configurations leading to the same error 
reduction, one of them is chosen randomly. This decremental selection procedure is repeated 
until the termination condition is satisfied.  

2) The forward selection tries to select a subset of m features from Sn* in an incremental manner. 
Initially the classification error is set to the number of samples, i.e. N. The wrapper first 
searches for the feature subset with one feature, denoted as Z1, by selecting the feature x* 1  that 
leads to the largest error reduction. Then from the set {Sn − Z1} the wrapper selects the feature 
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x* 2  so that the feature set Z2 = {Z1, x* 2 } leads to the largest error reduction. This incremental 
selection repeats until the classification error begins to increase, i.e. ek+1 > ek. Note that we allow 
the incremental search to continue when ek+1 equals ek, because we want to search a space as 
large as possible. Once the termination condition is satisfied, the selected number of features, m, 
is chosen as the dimension for which the lowest error is first reached. For example, suppose the 
sequence of classification errors of the first 6 features is [10, 8, 4, 4, 4, 7], the forward selection 
will terminate at 5 features, but only return the first 3 features as the result; in this way we 
obtain a more compact set of features that minimizes the error.  

 
3.3 Characteristic Feature Space  

Given two feature sets 1
nS  and 2

nS  both containing n features, and a classifier Γ, we say the feature 

space of 1
nS  is more characteristic if the classification error (using classifier Γ) on 1

nS  is smaller than on 
2
nS . This definition of characteristic space can be extended recursively to the subsets (subspaces) of 1

nS  

and 2
nS . Suppose we have a feature selection method F to generate a series of feature subsets in 1

nS : 
1
1S ⊂ 1

2S ⊂…⊂ 1
kS ⊂…⊂ 1

1−nS ⊂ 1
nS , and similarly a series of subsets in 2

nS : 2
1S ⊂… ⊂ 2

kS ⊂…⊂ 2
nS . We 

say 1
nS  is recursively more characteristic (RM-characteristic) than 2

nS  on the range Ω = [klower, kupper] (1 

≤ klower < kupper ≤ n), if for every k ∈ Ω, the classification error on 1
kS  is consistently smaller than on 1

kS .  

To determine which one of the feature sets 1
nS  and 2

nS  is superior, it is often insufficient to compare 
the classification errors for a specific size of the feature sets. A better way is to observe which set is RM-
characteristic for a reasonably large range Ω. In the extreme case, we use Ω = [1, n]. Given two feature 
selection methods F1 and F2, if the feature sets generated by F1 are RM-characteristic than those generated 
by F2, we believe the method F1 is better than F2.   

Let's consider the following example to compare mRMR and Max-Relevance based on the concept 
of RM-characteristic feature space. As a comprehensive study, we consider both the sequential and non-
sequential feature sets as follows (more details will be given in experiments). 

1) A direct comparison is to examine whether the mRMR sequential feature sets are RM-
characteristic than Max-Relevance sequential feature sets. We use both methods to select n 
sequential feature sets S1 ⊂ …⊂ Sk ⊂ …⊂ Sn and compute the respective classification errors. If 
for most k ∈ [1, n] we obtain smaller errors on mRMR feature sets, we can conclude that 
mRMR is better than Max-Relevance for the sequential (or incremental) feature selection.   

2) We also use other feature selection methods (e.g. wrappers) in the second stage of our feature-
selection algorithm to probe whether mRMR is better than Max-Relevance for non-sequential 
feature sets. For example, for the mRMR and Max-Relevance candidate feature sets with n* 
features, we use the backward-selection-wrapper to produce two series of feature sets with k = 
n*−1, n*−2, …, m features by removing some non-sequential features that are potentially 
redundant. Then the respective classification errors of these feature sets are computed. If for 
most k we find the mRMR non-sequential feature subset leads to lower error, we conclude the 
mRMR candidate feature set is (approximately) RM-characteristic than the Max-Relevance 
candidate feature set.  

3) Both the forward and backward selections of wrapper are used. Different classifiers (as 
discussed later in Section 4.2) are also considered in wrappers. We use both mRMR and Max-
Relevance methods to select the same number of candidate features, and compare the 
classification errors of the feature subsets thereafter selected by wrappers. If all the observations 
agree that the mRMR candidate feature set is RM-characteristic, we have high confidence that 
mRMR is a superior feature selection method.  
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4) Given two feature sets, if S1 n  is RM-characteristic than S2 n , then it is faithful to compare the 

lowest errors obtained for the subsets of S1 n  and S2 n .  
Clearly, for feature spaces containing the same number of features, wrappers can be applied more 

effectively on the space that is RM-characteristic. This also indicates wrappers can be applied at a lower 
cost, by improving the characterizing strength of features and reducing the number of pre-selected 
features.  

In real situations, it might not be possible to obtain 1
ke  < 2

ke  for every k in Ω. Hence, we can define a 

confidence score 0 ≤ ρ ≤ 1 to indicate the percentage of different k values for which the 1
ke  < 2

ke  

condition is satisfied. For example, when ρ=0.90 (90% k-values correspond to the 1
ke  < 2

ke condition), it 

is safe to claim that 1
nS  is approximately RM-characteristic than 2

nS  on Ω. As can be seen in the 
experiments, usually this approximation is sufficient to compare two series of feature subsets. 

 
4. Implementation Issues 

Before presenting the experimental results in Section 5, we discuss two implementation issues 
regarding the experiments: 1) calculation of mutual information for both discrete and continuous data, and 
2) multiple types of classifiers used in our experiments.     

 
4.1 Mutual Information Estimation  

We consider mutual information based feature selection for both discrete and continuous data. For 
discrete (categorical) feature variables, the integral operation in Eq. (1) reduces to summation. In this 
case, computing mutual information is straightforward, because both joint and marginal probability tables 
can be estimated by tallying the samples of categorical variables in the data.  

However, when at least one of variables x and y is continuous, their mutual information I(x;y) is hard 
to compute, because it is often difficult to compute the integral in the continuous space based on a limited 
number of samples. One solution is to incorporate data discretization as a preprocessing step. For some 
applications where it is unclear how to properly discretize the continuous data, an alternative solution is to 
use density estimation method (e.g. Parzen windows) to approximate I(x;y), as suggested by earlier work 
in medical image registration [7] and feature selection [17].   

Given N samples of a variable x, the approximate density function ˆ    p(x) has the following form, 

∑
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where δ(.) is the Parzen window function as explained below, x(i) is the ith sample, h is the window width. 
Parzen proved that with the properly chosen δ(.) and h, the estimation ˆ    p(x) can converge to the true 
density p(x) when N goes to infinity [21]. Usually, δ(.) is chosen as the Gaussian window:  
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where z = x − x(i), d is the dimension of the sample x, and Σ is the covariance of z. When d = 1, Eq. (17) 
returns the estimated marginal density; when d = 2, we can use Eq. (17) to estimate the density of 
bivariate variable (x,y), p(x,y), which is actually the joint density of x and y. For the sake of robust 
estimation, for d ≥ 2, Σ is often approximated by its diagonal components.  
 
4.2 Multiple Classifiers  

Our mRMR feature selection method does not convolve with specific classifiers. Therefore, we 
expect the features selected by this scheme have good performance on various types of classifiers. To test 
this, we consider three widely used classifiers, i.e. Naïve Bayes (NB), Support Vector Machine (SVM), 
and Linear Discrimant Analysis (LDA).  
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NB [20] is one of the oldest classifiers. It is based on the Bayes rule and assumes that feature 
variables are independent of each other given the target class. Given a sample s = {x1, x2, …, xm} for m 
features, the posterior probability that s belongs to class ck is  

∏
=

∝
m

i
kik cxpscp

1

)|()|( ,     (19) 

where p(xi|ck) is the conditional probability table (or densities) learned from examples in the training 
process. The Parzen-window density-approximation in Eqs. (17) and (18) can be used to estimate p(xi|ck) 
for continuous features. Despite the conditional independence assumption, NB has been shown to have 
good classification performance for many real data sets, on par with many more sophisticated classifiers 
[20].  

SVM [29][2] is a more modern classifier that uses kernels to construct linear classification boundary 
in higher dimensional spaces. We use the LIBSVM package [9], which supports both 2-class and multi-
class classification. 

As one of the earliest classifiers, LDA [30] learns a linear classification boundary in the input feature 
space. It can be used for both 2-class and multi-class problems. 

 
5. Experiments  

We tested our feature selection approach on two discrete and two continuous data sets. For these data 
sets, we used multiple ways to calculate the mutual information and tested the performance of the selected 
features based on three classifiers introduced above. In this way, we provided a comprehensive study on 
the performance of our feature selection approach under different conditions. 

This section is organized as follows. After a brief introduction of data sets in section 5.1, we compare 
mRMR against Max-Dependency in terms of both feature selection complexity and feature classification 
accuracy in section 5.2. These results demonstrate the practical advantages of our mRMR scheme and 
provide a direct verification of the theoretical analysis in Section 2. Then, in sections 5.3 and 5.4 we show 
a detailed comparison of mRMR and Max-Relevance, the latter of which has been widely used in 
practice. We do not show the comparison of mRMR with Min-Redundancy since Min-Redundancy alone 
usually leads to poor classification (and is seldom used to select features in real applications). Due to the 
space limitation, in the following we always demonstrate our comprehensive study with the most 
representative results. For simplicity, we use MaxDep to denote Max-Dependency and MaxRel to denote 
Max-Relevance, throughout the figures, tables, and texts in this section. 

 
5.1 Data Sets 

The four data sets we used are shown in Table 1. They have been extensively used in earlier studies 
[1][13][26][27][5]. The first two data sets, HDR-MultiFeature (HDR) and Arrhythmia (ARR), are also 
available on the UCI machine learning archive [28]. The latter two, NCI and Lymphoma (LYM), are 
available on the respective authors' web sites. All the raw data are continuous. Each feature variable in the 
raw data was preprocessed to have zero mean-value and unit variance (i.e. transformed to their z-scores). 
To test our approaches on both discrete and continuous data, we discretized the first two data sets, HDR 
and ARR. The other two data sets, NCI and LYM, were directly used for continuous feature selection.  

The data set HDR [6][14][13][28] contains 649 features for 2000 handwritten digits. The target class 
has 10 states, each of which has 200 samples. To discretize the data set, each feature variable was 
binarized at the mean value, i.e., it takes 1 if it is larger than the mean value and –1 otherwise. We 
selected and evaluated features using 10-fold Cross-Validation (CV). 

The data set ARR [28] contains 420 samples of 278 features. The target class has 2 states with 237 
and 183 samples, respectively. Each feature variable was discretized into 3 states at the positions µ±σ (µ 
is the mean value, and σ the standard deviation): it takes -1 if it is less than µ-σ, 1 if larger than µ+σ, and 
0 if otherwise. We used 10-fold CV for feature selection and testing.  

The data set NCI [26][27] contains 60 samples of 9703 genes; each gene is regarded as a feature. The 
target class has 9 states corresponding to different types of cancer; each type has 2 ~ 9 samples. Since the 
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sample number is small, we used the Leave-One-Out (LOO) CV method in testing.  
The data set LYM [1] has 96 samples of 4026 gene features. The target class corresponds to 9 

subtypes of the lymphoma. Each subtype has 2 ~ 46 samples. The sample numbers for these subtypes are 
highly skewed, which makes it a hard classification problem.  

Note that the feature numbers of these data sets are large (e.g. NCI has nearly 10000 features). These 
data sets represent some real applications where expensive feature selection methods (e.g. exhaustive 
search) cannot be used directly. They differ greatly in sample size, feature number, data type (discrete or 
continuous), data distribution, and target class type (multiclass or 2-class). In addition, we studied 
different mutual information calculation schemes for both discrete and continuous data, provided results 
using different classifiers and different wrapper selection schemes. We believe these data and methods 
provide a comprehensive testing suit for feature selection methods under different conditions. 

 
5.2 Comparison of mRMR and Max-Dependency 

The mRMR scheme is a first-order approximation of the Max-Dependency (or MaxDep) selection 
method. We compared their performances in terms of both feature selection complexity and feature 
classification accuracy. These comparisons indicate their applicability for real data.  

Table 1. Data sets used in our experiments 
Data set HDR MultiFeat Arrhythmia NCI Lymphoma 

Acronym HDR ARR NCI LYM 

Source UCI [28], Duin  
et al [6][14][13] UCI [28] Ross et al [26] 

Scherf et al [27] Alizadeh et al [1] 

Raw data type Continuous 
Experimental  

data type  Discrete Continuous 

Processing 
method Binarize at µ Discretize at µ±σ 

to be 3-state 
z-score 

 (mean value 0, standard deviation 1) 
# Variable 649 278 9703 4026 
# Sample 2000 420 60 96 
# Class 10 2 9 9 
Class Name # Sample Name # Sample Name # Sample Name # Sample
C1 0 200 Normal 237 NSCLC 9 DLBCL 46 
C2 1 200 Abnormal 183 Renal 9 CLL 11 
C3 2 200   Breast 8 ABB 10 
C4 3 200   Melanoma 8 FL 9 
C5 4 200   Colon 7 RAT 6 
C6 5 200   Leukemia 6 TCL 6 
C7 6 200   Ovarian 6 RBB 4 
C8 7 200   CNS 5 GCB 2 
C9 8 200   Prostate 2 LNT 2 

C10 9 200       
Testing method 10-fold CV LOOCV 

 
5.2.1 Feature Selection Complexity 

In practice, for categorical feature variables, we can introduce an intermediate "joint-feature" variable 
for MaxDep selection, so that the complexity would not increase much in selecting additional features 
(the comparison results against mRMR are omitted due to space limitation). Unfortunately, for continuous 
feature variables, it is hard to adopt a similar approach. For example, we compared the average 
computational time cost to select the top 50 mRMR and MaxDep features for both continuous data sets 
NCI and LYM, based on parallel experiments on a cluster of eight 3.06G Xeon CPUs running Redhat 
Linux 9, with the Matlab implementation.  
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(a) Time cost for selecting each NCI feature (b) Time cost for selecting each LYM feature

 
Fig. 1 Time cost (seconds) for selecting individual features based on mutual information estimation for 
continuous data sets.  

 
The results in Fig. 1 demonstrate that the time cost for MaxDep to select a single feature is a 

polynomial function of the number of features, whereas for mRMR it is almost constant. For example, for 
NCI data, MaxDep takes about 20 and 60 seconds to select the 20th and 40th features, respectively. In 
contrast, mRMR always takes about 2 seconds to select any features. For the LYM data, MaxDep needs 
more than 200 seconds to find the 50th feature, while mRMR uses only 5 seconds. We can conclude that 
mRMR is computationally much more efficient than MaxDep.  

 
5.2.2 Feature Classification Accuracy 

The selected features for the four data sets were tested using all the three classifiers introduced in 
section 4.2. However, for both clarity and briefness, we only plot several representatives of the cross-
validation classification error-rate curves in Fig.2. Similar results were obtained in other cases. 

Fig. 2 (a) shows that for the HDR data, the overall performance of MaxDep and mRMR is similar. 
MaxDep gets slightly lower errors when the feature number is relatively small, within the range between 
1 and 20. When the feature number is larger than 30, the MaxDep features lead to a significantly greater 
error rate than mRMR features, as indicated in the blow-up windows. For example, 50 mRMR features 
lead to 6% error, in contrast to the 11% error of 50 MaxDep features. Noticeably, the two error-rate 
curves have distinct tendency. For mRMR, the error rate constantly decreases and then converges at some 
point. On the contrary, the error rate for MaxDep declines for small feature-numbers and then starts to 
increase for greater feature-numbers, indicating that more features lead to worse classification.  

Fig. 2 (b) ~ (d) show the respective comparison results for ARR, NCI, and LYM data sets. The 
different tendency of the mRMR and MaxDep error-rate curves can be seen more prominently for these 
three data sets. For example, in (b) we see that only with the first 3~5 features, MaxDep has a slightly 
lower error rate than mRMR; but the respective error rates are far away from optimum. For all the rest 
feature numbers, mRMR features lead to consistently lower errors than MaxDep. For NCI data in (c), 
MaxDep is better than mRMR only when less than 7 features are used, but its overall classification 
accuracies are very poor. For a larger feature number, mRMR features lead to only half of the error rate of 
MaxDep features, indicating a greater discriminating strength. For LYM data in (d), MaxDep features are 
never better than mRMR features. 

Why mRMR tends to outperform MaxDep when the feature number is relatively large? This is 
because in high dimensional space the estimation of mutual information becomes much less reliable than 
in 2-dimensional space, especially when the number of data samples is comparatively close to the number 
of joint states of features. This phenomenon is seen more clearly for continuous feature variables, i.e. the 
NCI and LYM data sets.  
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(a) 10-fold CV error rates of HDR data (b) 10-fold CV error rates of ARR data 

  
(c) LOOCV error rates of NCI data (d) LOOCV error rates of LYM data 

 
Fig. 2 Comparison of feature classification accuracies of mRMR and MaxDep. Classifiers NB, SVM, LDA 
were used.  

 
This also explains why for HDR data, the difference between mRMR and MaxDep is not as 

prominent as those of the three other data sets. Because the HDR data set has a much larger number of 
data samples than ARR, NCI, and LYM data sets, the accuracy of mutual information estimation for HDR 
data does not degrade as quickly as those for the other three data sets.  

Since the complexity of MaxDep in selecting features is higher and the classification accuracy using 
MaxDep features is lower, it is much more appealing to make use of mRMR instead of MaxDep in 
practical feature selection applications. In the following subsections, we will focus on comparing mRMR 
against the most widely used MaxRel selection method. 

 
5.3 Comparison of Candidate Features Selected by mRMR and MaxRel 

MaxRel and mRMR have similar computational complexity. The mRMR method is a little bit more 
expensive, but the difference is minor. Thus, we focus on comparing the feature classification accuracies. 

 
5.3.1 Discrete Data 

Figs. 3 and 4 show results of the incremental feature selection and classification for discrete data sets. 
The feature number ranges from 1 to 50.  

For HDR data set, Fig. 3 (a)~(c) show the classification error rates with classifiers NB, SVM, and 
LDA respectively. Clearly, features selected by mRMR consistently attain significantly lower error rates 
than those selected by MaxRel. In other words, feature sets selected by mRMR are RM-characteristic than 
those selected by MaxRel. In this case, it is faithful to compare the lowest classification errors obtained 
for both methods. As illustrated in the zoom-in windows, with NB, the lowest error rate of mRMR is 
about 6%, while that of MaxRel is about 10%; with SVM, the lowest error rate of mRMR is about 3.5%, 
the lowest error rate of MaxRel is about 5.5%; with LDA, the lowest error rate of mRMR features is 
around 7%, whereas that of MaxRel is around 11%.  
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(a) NB classifier error rate (b) SVM classifier error rate (c) LDA classifier error rate 

 
Fig. 3 10-fold CV error rates of HDR data using mRMR and MaxRel features. 

 
 
 

   
(a) NB classifier error rate (b) SVM classifier error rate (c) LDA classifier error rate 

 
Fig. 4 10-fold CV error rates of ARR data using mRMR and MaxRel features. 

 
 
Fig. 4 (a)~(c) show the classification error rates for the ARR data. Similar to those of the HDR data, 

features selected by mRMR significantly and consistently outperform those selected by MaxRel. When 
nearly 50 features are used, the performance of mRMR and MaxRel become close. Overall, the 
performance of mRMR is much better than that of MaxRel, since 15 mRMR features lead to better 
classification accuracy than 50 MaxRel features. 

Results in this section show that for discrete data sets, the candidate features selected by mRMR are 
significantly better than those selected by MaxRel. These effects are independent of the concrete 
classifiers we used.  

 
5.3.2 Continuous Data 

Tables 2 ~ 3 show the results of the incremental feature selection and classification for continuous 
data sets. The feature number ranges from 1 to 50 (to save space, we only list results of 1,5,10,15,…,50 
features). 

Table 2 shows that for NCI data, features selected by mRMR lead to lower error rates than those 
selected by MaxRel. The differences are consistent and significant. For example, with NB and more than 
40 features (for simplicity, this combination is called "NB+40features"), we obtained an error rate around 
20% for mRMR and around 33% for MaxRel. With SVM+40features, we obtained the error rate 23~26% 
for mRMR, and 35~38% for MaxRel. With LDA+40features, the results are similar. 
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Table 3 shows that for LYM data, mRMR features are also superior to MaxRel features (e.g. 3% 
versus 15% for LDA+50features).  

Results in this section show that for continuous data, mRMR also outperforms MaxRel in selecting 
RM-characteristic sequential feature sets. They also indicate that the Parzen-window-based density-
estimation for mutual information computation can be effectively used for feature selection. 

 
Table 2. LOOCV error rate (%) of NCI data using mRMR and MaxRel features. 

Classifier           m 
Method   1 5 10 15 20 25 30 35 40 45 50 

MaxRel 65.00 51.67 51.67 45.00 46.67 43.33 41.67 38.33 36.67 33.33 36.67 NB 
mRMR 65.00 60.00 40.00 35.00 26.67 23.33 25.00 25.00 21.67 20.00 23.33 
MaxRel 98.33 46.67 55.00 50.00 45.00 55.00 41.67 35.00 38.33 35.00 36.67 SVM 
mRMR 98.33 70.00 58.33 48.33 40.00 31.67 31.67 31.67 26.67 23.33 23.33 
MaxRel 73.33 60.00 60.00 50.00 46.67 46.67 41.67 36.67 38.33 41.67 40.00 LDA 
mRMR 73.33 66.67 50.00 53.33 45.00 33.33 35.00 35.00 33.33 30.00 30.00 

 

Table 3. LOOCV error rate (%) of LYM data using mRMR and MaxRel features. 
Classifier           m 

Method   1 5 10 15 20 25 30 35 40 45 50 

MaxRel 72.92 25.00 15.63 13.54 13.54 12.50 13.54 12.50 11.46 11.46 10.42 NB 
mRMR 72.92 17.71 16.67 10.42 11.46 9.38 10.42 9.38 9.38 7.29 8.33 
MaxRel 42.71 27.08 21.88 21.88 18.75 16.67 14.58 14.58 15.63 11.46 12.50 SVM 
mRMR 42.71 11.46 10.42 7.29 5.21 7.29 7.29 5.21 5.21 5.21 4.17 
MaxRel 68.75 32.29 22.92 23.96 23.96 21.88 22.92 17.71 16.67 16.67 15.63 LDA 
mRMR 68.75 18.75 15.63 12.50 6.25 7.29 5.21 3.13 4.17 3.13 3.13 

 
5.4 Comparison of Compact Feature Subsets Selected by mRMR and MaxRel 

The results of incrementally selected candidate features have indicated that with the same number of 
sequential features, mRMR feature set has more characteristic strength than MaxRel feature set. Here we 
investigate that given the same number of candidate features, whether the mRMR feature space is RM-
characteristic and contains a more characterizing non-sequential feature subspace than the MaxRel feature 
space. This can be examined using the wrapper methods in Section 3.  

Since the first 50 features lead to reasonably stable and small error for every data set and 
classification method we tested (see Figs. 3~4 and Tables 2~3), we used the first 50 features selected by 
MaxRel and mRMR as the candidate features.  

Both forward and backward selection wrappers were used to search for the optimal subset of features. 
If the candidate feature space of mRMR is RM-characteristic than that of MaxRel, wrappers should be 
able to find combinations of mRMR features that correspond to better classification accuracy. 

As an example, Fig. 5 shows the classification error rates of optimal feature subsets selected by 
wrappers, for HDR data set and NB classifier. Fig.5 (a) and (b) (the zoom-in view of (a)) clearly show 
that forward-selection-wrapper can consistently find a significant better subset of features from the 
mRMR candidate feature set than from the MaxRel candidate feature set. This indicates mRMR candidate 
feature set is RM-characteristic for the forward-selection of wrapper. For MaxRel, wrapper obtains the 
lowest error 6.45% by selecting 18 features; more features will increase the error (thus the wrapper 
selection is terminated). In contrast, by selecting 18 mRMR features, wrapper has ~ 4% classification 
error; it achieves even lower classification error with more mRMR features, e.g. 3.2% error for 26 
features.  

Fig.5 (c) shows that the backward-selection-wrapper also finds superior subsets from the candidate 
features generated by mRMR. Such feature subset always leads to significantly lower error rate than the 
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subset selected from MaxRel candidate features. This indicates the space of candidate features generated 
by mRMR does embed a subspace in which the data samples can be  more  easily classified.  

Table 4 summarizes the results obtained for all four data sets and three classifiers. Obviously, similar 
to the HDR data, for almost all combinations of data sets, wrapper selection methods, and classifiers, 
lower error rates are attained from the mRMR candidate features, indicating that wrappers find more 
characterizing feature subspaces from the mRMR features than from MaxRel features. We can conclude 
that mRMR candidate feature sets do cover a wider spectrum of the more characteristic features. (There 
are two exceptions in Table 4, for which the obtained feature subsets are comparable: 1) 
"NCI+LDA+Forward", where 5 mRMR features lead to 20 errors (33.33%) and 7 MaxRel features lead to 
19 errors (31.67%), and 2) "LYM+SVM+Backward", the same error (3.13%) is obtained).  

 
 

   
(a) Forward selection (b) Forward selection (zoom-in) (c) Backward selection 

 
Fig. 5 The wrapper selection/classification results (HDR + NB) 

 
 

Table 4. Comparison of different wrapper selection results (lowest error rate (%)) 
 

NB SVM LDA Data set Wrapper MaxRel mRMR MaxRel mRMR MaxRel mRMR 
Forward 6.45 3.20 5.50 3.45 6.80 4.05 HDR 
Backward 5.95 3.10 4.55 2.85 6.90 4.00 
Forward 18.81 17.86 20.95 19.29 19.76 18.10 ARR 
Backward 23.10 17.86 20.48 19.52 20.48 18.33 
Forward 26.67 13.33 25.00 21.67 31.67 33.33 NCI 
Backward 20.00 15.00 18.33 13.33 30.00 25.00 
Forward 6.25 5.21 6.25 2.08 6.25 2.08 LYM 
Backward 5.21 3.13 3.13 3.13 6.25 3.13 

 
6. Discussions  

In our approach, we have stressed that a well-designed filter method, such as mRMR, can be used to 
enhance the wrapper feature selection, in achieving both high accuracy and fast speed. Our method uses 
an optimal first-order incremental selection to generate a candidate list of features that cover a wider 
spectrum of characteristic features. These candidate features have similar generalization strength on 
different classifiers (as seen in Figs. 3~4 and Tables 2~3). They facilitate effective computation of 
wrappers to find compact feature subsets with superior classification accuracy (as shown in Fig. 5 and 
Table 4). Our algorithm is especially useful for large-scale feature/variable selection problems where 
there are at least thousands of features/variables, such as medical morphometry [23][8], gene selection 
[32][31][5][12], etc. 
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Of note, the purpose of mRMR approach studied in this paper is to maximize the dependency. This 
typically involves the computation of multivariate joint probability, which is nonetheless difficult and 
inaccurate. Combining both Max-Relevance and Min-Redundancy criteria, the mRMR incremental 
selection scheme provides a better way to maximize the dependency. In this case, the difficult problem of 
multivariate joint probability estimation is reduced to estimation of multiple bivariate probabilities 
(densities), which is much easier. Our comparison in section 5.2 demonstrates that mRMR is a very good 
approximation scheme to Max-Dependency. In most situations, mRMR reduces the feature selection time 
dramatically for continuous features and improves the classification accuracy significantly. For data sets 
with a large number of samples, e.g. the HDR data set, the classification accuracy of mRMR is close to or 
better than that of Max-Dependency. We notice that the mRMR approach could also be applied to other 
domains where the similar heuristic algorithms are applicable to maximize the dependency of variables, 
such as searching (learning) the locally optimal structures of Bayesian networks [24].   

Our scheme of mRMR does not intend to select features that are independent of each other. Instead, at 
each step, it tries to select a feature that minimizes the redundancy and maximizes the relevance. For real 
data, the features selected in this way will have more or less correlation with each other. However, our 
analysis and experiments show that the joint effect of these features can lead to very good classification 
accuracy. A set of features that are completely independent of each other usually would be less optimal. 

All the feature selection methods used in this paper, including incremental search, forward or 
backward selection, etc., are heuristic search methods. None of them can guarantee the global 
maximization of a criterion function. The fundamental problem is the difficulty  in searching the whole 
space, as pointed out at the beginning of this paper. Additionally, questing the global optimum strictly 
might lead to data overfitting. On the contrary, mRMR seems to be a practical way to achieve superior 
classification accuracy in relatively low computational complexity.  

Our experimental results show that although in general more mRMR features will lead to a smaller 
classification error, the decrement of error might not be significant for each additional feature, or 
occasionally there could be fluctuation of classification errors. For example, in Fig. 3, the fifth mRMR 
feature seemingly has not led to a major reduction of the classification error produced with the first four 
features. Many factors count for these fluctuations. One cause is that additional features might be noisy. 
Another possible cause is that the mRMR scheme in Eq. (6) takes difference of the relevance term and the 
redundancy term. It is possible that one redundant feature also has relatively large relevance, so it could 
be selected as one of the top features. A greater penalty on the redundancy term would lessen this 
problem. A third possible cause is that the cross-validation method used might also introduce some 
fluctuations of the error curve. While a more detailed discussion on this fluctuation problem and other 
potential causes is beyond the scope of this paper, a way to solve this problem is to use other feature 
selectors to directly minimize the classification error and remove those potentially unneeded features, as 
what we do in the second-stage of our algorithm. For example, by using wrappers in the second stage, the 
error curves thus obtained in Fig. 5 are much smoother than those obtained using the first-stage only in 
Fig. 3. 

Our results show that for continuous data, density estimation works well for both mutual information 
calculation and naïve Bayes classifier. In earlier work, Kwak et al [17] used the density estimation 
approach to calculate the mutual information between an individual feature xi and the target class c. We 
used a different approach based on direct Parzen-window approximation similar to [7]. Our results 
indicate that the estimated density and mutual information among continuous feature variables can be 
utilized to reduce the redundancy and improve the classification accuracy.  

Finally, we notice that Eq. (6) is not the only possible mRMR scheme. Instead of combining 
relevance and redundancy terms using difference, we can consider quotient [5] or other more 
sophisticated schemes. The quotient-combination imposes a greater penalty on the redundancy. 
Empirically, it often leads to better classification accuracy than the difference-combination for candidate 
features. However, the joint effect of these features is less robust when some of them are eliminated; as a 
result, in the second-stage of feature selection using wrappers, the set of features induced from the 
quotient-combination would have a bigger size than that from the difference-combination. The mRMR 
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paradigm can be better viewed as a general framework to effectively select features and allow all 
possibilities for more sophisticated or more powerful implementation schemes. 

 
7. Conclusions  

We present a theoretical analysis of the minimal-redundancy-maximal-relevance (mRMR) condition 
and show that it is equivalent to the maximal dependency condition for first-order feature selection. Our 
mRMR incremental selection scheme avoids the difficult multivariate density estimation in maximizing 
dependency. We also show that mRMR can be effectively combined with other feature selectors such as 
wrappers to find a very compact subset from candidate features at lower expense. Our comprehensive 
experiments on both discrete and continuous data sets and multiple types of classifiers demonstrate that 
the classification accuracy can be significantly improved based on mRMR feature selection. 
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